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FOREWORD j

The work reported herein was performed by the Grumman Aerospace Corpora-

tion under NASA Langley Research Center Contract No. NAS 1-12277 - testing and

evaluation of two TD Ni-20Cr Thermal Protection System Panels. The technical

representatives of the contracting officer were Mr. B.A. Stein of the Materials Re-

search Branch, Materials Division, and Mr. H.L. Bohon of the Thermal Protection

Section, Thermal Structures Branch, Structures and Dynamics Division. The period

of performance was for seven months, starting in June, 1973.

Many individuals at Grumman contributed to the work reported here. Messrs.

Charles Walthers and Barry Bell of the Grumman Environmental Test Group designed

the heating array and supervised the testing. Mr. George Myers of Structural Test

designed the mechanical loading device and supervised its installation. Much of the

testing was performed by Mr. Richard Ewing of the Environmental Test Laboratory.

Mr. Carl Salhofen was the instrumentation engineer.

Technical information regarding the panel was provided by Messrs. C. Picard

and D. Chaumette of Avions Marcel Dassault. Mr. M. Piry of Grumman provided

valuable liaison between Grumman and Dassault.
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SUMMARY

The results of a thermal-structural test program to verify the performance of a

metallic/radiative Thermal Protection System (TPS) under reentry conditions are pre-

sented. This TPS panel is suitable for multiple reentry, high L/D space vehicles,

such as the NASA Space Shuttle, having surface temperatures up to 1200°C !(2200°F).

The TPS panel tested consists of a corrugation-stiffened, beaded-skin!TD Ni-20Cr

metallic heat shield backed by a flexible fibrous quartz and radiative shield insulative

system. Test conditions simulated the critical heating and aerodynamic pressure en-

vironments expected during 100 repeated missions of a reentry vehicle. Temperatures

were measured during each reentry cycle; heat-shield flatness surveys to measure
I

permanent set of the metallic components were _nade every 10 cycles. The TPS panel,

in spite of localized surface failures, performed its designated function. :



Section 2

INTRODUC TION

The development of high-temperature metallic heat shield thermal protection

systems (TPS) for reentry vehicles having high L/D characteristics has been underway

at Grumman Aerospace since 1969. This development was motivated by the NASA

Space Shuttle and its related technology requirements. Grumman was involved in the

NASA Alternate Space Shuttle Concepts Study (NASA Contract NAS 1-1160), the results

of which are presented in Ref 1, and prepared a proposal for the design and production

of the Space Shuttle (Ref 2). To support these programs, a major effort to develop a

reentry TPS was undertaken. This effort included development of both metallic and

non-metallic heat shields covering the temperature range of 315-1370°C (600-2500°F).

Metallic heat shields of titanium, Rene 41, Haynes-25, dispersion-stabilized nickel-

chromium, and columbium alloys were designed and analyzed. Results of this program

are presented in Ref 3, 4, and 5. A thoria-dispersion-stabilized nickel-20 percent

chromium alloy (TD Ni-20Cr) metallic heat shield was developed for application in the

reentry surface temperature range of 970-1200°C (1800-2200°F).

Since late 1969, Grumman has sponsored an IRAD program directed toward

development of metallic TPS components for the Space Shuttle. Initially, this pro-

gram investigated the development of heat shields of cobalt-based alloys such as

Haynes-25 and Haynes-188. Four generations of cobalt-based alloy TPS panels were

designed, fabricated, and tested under simulated launch and reentry conditions, in-

cluding heating, pressure loads, and acoustic loads. All of these panels were of

corrugation-stiffened, beaded skin. The results of tests on these panels and of ex-

tensive structural analysis are reported in Ref 5 through 11. During the course of this

program, analytical techniques were developed specifically for a metallic TPS.

The design approach developed for the cobalt-based-alloy panels was extended

to TD Ni-20Cr. Grumman designed and fabricated some small subpanels of TD Ni-

20Cr which could operate in the temperature range of 970-1200°C (1800-2200°F).

These panels were joined by spotwelding, and were built primarily to develop



manufacturing expertise. This experiencedemonstrated that the corrugation-

stiffened design was feasible for the manufacture of TD Ni-20Cr TPS panels.

In late 1970, as part of the SpaceShuttleEuropean Technical Assistance Agree-

ment, an arrangement between_vzun_ _w=L_...._.1 _n_-,,lt_..... ,rid Grumman was made for a

cooperative effort in various SpaceShuttletechnolog_ areas, one of which was a high-

temperature metallic TPS. Dassanlt, as a prime contractor for CNES(Centre Nation-

ale Des EtudesSpatiales), concentratedonutilization of the TD Ni-20Cr alloy and, in

particular, on applying anONERA (Organization Nationale Des Etudes de Recherches

Aeronautique} developedbraze process asthe primary joining technique. This process

offered the potential of an improved structural design becausethe braze did not reduce

the strength of the adjacent metal. It wasagreed that Dassault would apply this braze

process to fabricate experimental panelsusing the Grumman corrugation-stiffened,

beadeddesign.

Dassault also introduced a new thermal insulation concept to be used in conjunc-

tion with the TD Ni-20Cr structural panel. This insulation system made use of layers

of anextra-low-density quartz fiber felt manufactured in France, separated by very

thin reflective screens made of gold-plated micarta. This system, desig_natedProtec-

alor, was originally developedby the French firm Bronzavia for use as aircraft pro-

pulsion system thermal insulation. This insulation, although more complex, is lighter

than conventional materials such as Microquartz.

Documentationof the Dassault developmentwork leading to the TD Ni-20Cr TPS

panel can be found in Ref 12, 13, and 14. The cooperative effort culminated in the

fabrication by Dassault of two identical TD Ni-20Cr test panels incorporating Grumman

TPSdesign experience with the braze andinsulation experience of Dassault.

The objective of this program was to evaluate the performance of the TD Ni-20Cr

panel concept under simulated reentry environments. This was to be accomplished by

tests of two different panels, the first in an aerodynamic pressure/thermal environ-

ment, andthe secondin an acoustic/thermal environment.

3
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units.

An outline of this program is:

• Test the first TD Ni-20Cr TPS p___n_e!Ln_the Grumme.n Environmental Test

Laboratory, as follows:

- Ten cycles of simulated entry heating with a peak surface temperature of

1200°C (2200°F)

- Ninety cycles of a cold pressure load for ascent followed by a combined

reentry heating and pressure load

- Flatness survey of outer-panel surface after every 10 test cycles

• Deliver the second TD Ni-20Cr TPS panel to NASA Langley for testing in the

thermal/acoustic facility

• Fabricate and deliver to NASA Langley attachment equipment necessary to

install the panel in this facility

All measurement values contained in this report are expressed in SI and English



Section 3

PANEL CONCEPT

3.1 DESIGN CRITERIA

The environment in which the TPS panel must operate was developed for the

Grumman H-33 orbiter during the NASA Alternate Space Shuttle Concepts Study

(Ref 1). Views of this orbiter with peak temperature isotherms are shown in Fig.

3-1. For the current study, the maximum use temperature of the TD Ni-20Cr mate-

rial was arbitrarily set at 1200°C (2200°F). The regions where this material can be

competitive are the lower forward fuselage to the rear of the nosecap, the lower out-

board wing just behind the leading edge, and the lower surface of the elevon.

Trajectory parameters for the H-33 orbiter, which are reported in Ref 1, and

are used to define the TPS environment used here, are shown in Fig. 3-2 through 3-5.

Figures 3-2 and 3-3 define the ascent trajectory. The maximum dynamic pressure,

29,000 N/m 2 (605 psi) occurs during ascent at Mach 1.25 and an altitude ofl0, 050 m

(33,000 ft). Figure 3-4 gives vehicle reentry trajectory parameters; Fig. 3-5 gives

the local surface equilibrium temperature and surface pressures for the design point

120 inches behind the nose. This point, which is noted on Fig. 3-1, was considered

typical for the TD Ni-20Cr panel environment. The maximum surface temperature

here is 1200°C (2200°F). The design conditions are taken from Ref 1, where the H-33

orbiter is defined in detail, and are:

• 100-reentry mission life

• Maximum deflection in a!51-cm (20-in.) span = 1.27 cm (0.50 in.)

• No local or overall panel flutter

• Maximum launch and boost pressures (Fig. 3-6):

+21,500 N/m 2 (+ 450 psi)*

-9550 N/m 2 (-200 psi)

*Positive pressures are normal to and toward outer panel surface; negative pressures

are normal to and away from outer panel surface



• Maximum reentry pressure (Fig. 3-7):

+2300 n/m 2 (+48 psi)

• Maximum reentry temperature (Fig. 3-7):

1200°C (2200°F)

3.2 HEAT-SHIELD MATERIALS

In the field of metallic heat shields for Space Shuttle thermal protection systems,

the dispersion-strengthened nickel-base alloys are leading candidates for the hotter

heat-shield regions. These alloys are attractive because of their good high-temperature

strength.

The superalloys (e.g., nickel alloy Rene 41 and cobalt alloy Haynes-25) retain

high-temperature strength to about 970°C (1800°F). Above this temperature, the

refractory metal alloys (e. g., columbium alloy Cb-752 or tantalum alloy T-222) have

high-temperature strength but, because of their rapid oxidation in air, they require

protective coatings, which, for repeated re-use, have questionable reliability.

Between the superalloys and the coated refractory metals is the class of

dispersion-strengthened alloys such as TD Ni-20Cr which offer adequate high-

temperature strength in air in an uncoated condition, in the temperature range

of 970-1200°C (1800-2200°F).

Under DOD- and NASA-sponsored programs (Ref 15 through 19), a number of

dispersion-strengthed alloys have been developed primarily for turbojet engines and

appear useful for Space Shuttle heat shields. In all of these studies it has been deter-

mined that the high-temperature strength is associated with the dispersion of very

small particles of metal oxide - one to four percent by volume - in a metal matrix. The

dispersoid, thorium dioxide (THO2) , has been used mainly because of its good chemical

stability.

Most of these alloys are produced from powders. However, the method of com-

pacting the powders, the blending and making of the alloy, along with the sheet-rolling

processes, varies from one manufacturer to another. As a result, alloys with identical

composition can have appreciably different properties, depending on the manufacturer.
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Of all the dispersion-strengthened alloys, TD Ni-20Cr is the most developedfor

heat-shield applications because it offers the best combination of stren_h, oxidation

resistance, and availability. This alloy was originally developedby E.I. DuPont

deNemours, Inc., andthe rights and facilities to produce it sold subsequently to

..i. r,._L.l._.it_l.,_.ll., ._UL_.'e

The TD Ni-20Cr supplied to Grumman/Dassault by NASA for fabricating the TPS

panels in this program were manufactured by Fansteel, Inc., under the NASA dis-

persion-strengthened alloy development program. This alloy has a nominal composi-

tion of Ni, 20% Cr, and 2% THO 2. The mechanical and physical properties are listed

in Ref 5. The nominal material thicknesses were 0. 025 cm (0. 010 in. ) for the sheets

used in fabricating the basic heat shield and 1.25 cm (0.5 in. ) for rods used in

fabricating fasteners, etc. The material was easy to fabricate into the heat-shield

configx[rations used in this study and required no additional preparation other than

that used in other similar Grumman heat-shield programs employing superalloys.

The only exception was in the braze process used by Dassault to attach the outer

beaded skin to the corrugation.

The insulation materials and desig_ concept are discussed in a following section.

3.3 CONFIGURATION

The Dassault TD Ni-20Cr TPS test article is the intersection of four 50.8- by

101.6-cm C20- by 40-in.) reradiative skin panels supported on 13.97-cm (5.5-in.) sup-

port rib standoffs located on a 50.8-cm (20-in.) pitch.

A photograph of the assembled test article is shown in Fig. 3-8. It shows the

metallic frontface, an aluminum backface plate, metallic standoff supports, and a

two-layer insulation system sandwiched between these components. The coils of wire

shown are instrumentation leads. A design concept drawing is presented in Fig.

3-9.

Thetest article represents the intersection of four 50.8-cm (20-in.) square

heat-shield panels. A longitudinal expansion joint and a lateral panel splice are in-

corporated to verify feasibility of these design features. Each panel consists of a

beaded 0. 025-cm (0. 010-in.)corrugation. _hese two formed sheets are joined along

i
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the flats between beads by a French-developed proprietary brazing process. The com-
! F

bi_n_ed beads and corrugations form a panel with high longitudinalibending Stiffness hav-

ing good flutter characteristics and which transfers aerodynamic pressure loads to the

support rib standoffs by simple beam action.

Thermal expansion in the lateral direction (perpendicular to the beads) is per-

mitted by flexing of the beads, eliminating the need for lateral expansion joints. A

longitudinal expansion joint is located at 101.6 cm (40-in.) intervals or at every other

support rib standoff to "absorb" the thermal expansion from 101.6 cm (40 in. ) of panel

or two 50.8-cm (20-in.) simply supported spans. (Details of the joint design can be

seen in Fig. 3-10.) The support ribs at this joint are designed to flex as the skins

expand, yet remain rigid enough to transfer panel loads vertically to the vehicle pri-

mary structure. Between the expansion joints are fixed supports, designed to transfer

panel loads without flexing. On the test article, the fixed supports are located at the

ends of the panels; their details can be seen in Fig. 3-8. These fixed supports have

brackets placed at 19.05-cm (7.5-in.) intervals, which are designed to take all longi-

tudinal drag loads.

Each support rib consists of a p.025-cm (0.010-in.) beaded web mechanically I
i

fastened to the frontface skins above and to the aluminum structure below with angle

clips located at each fiatbetween the beads. The web beads are of constant cross-

section and are designed to relieve thermal stress between the hot skin panel and the

cool primary structure. A splice parallel to the beads is located along the middle flat

of the panel. Here, joining is accomplished by a row of threaded TD Ni-20Cr fasteners

spaced 5.08 cm (2 in.) apart. All parts are made ofTD Ni-20Cr and are joined with

TD Ni-20Cr threaded fasteners.

3.4 UNIT WEIGHT

The _D Ni-20Cr TPS panel weight was calculated (Table 3-1) and measured in the

laboratory. The calculated weight, 7.86 kg (17.3 lb) is slightlyless than Ithemeasured

8.59 kg (18.9 lb) due to the instrumentation stillattached to the panel. The calculated

totalunit weight is then 15. 14 kg/m 2 (3.09 psi) of panel, which includes 6.71 kg/m 2

(1.37 psi) for the insulation package. The aluminum backface panel representing sub-

structure is not included in these weights.
i
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3.5 INSULATION CONCEPTS

The insulation assembly used in the test panel is a composite of two layers:
P

4.0 cm (1.57 in. ) of a fibrous alumina-silica-chromia felt called Dynaflex, and 7.0

• _1-- _ h n _xTl:_ _:_ ncm (2.75 in. ) of Protecalor. The insulation assembly is "'trapped" in _,_c_ .........

the TD Ni-20Cr skin panels, support ribs, and aluminum heat-sink structure, obviat-

ing mechanical attachments.

Dynaflex, manufactured by the Johns-Manville Company, has a density of 96

kg/m 3 (6.0 pcf), and was selected for use in the temperature range of 900-1200°C

(1650-2200°F). Because there was no_TD Ni-20Cr ifoil available that could be used
/

for bagging needed to prevent moisture absorption_y the insulation, the layer was

inserted without a metal foil case. The second layer of insulation is the Protecalor.

This system consists of a series of very thin reflective screens separated by layers

of lightweight quartz wool called Astroquartz. For the temperature range of 600-900°C

(1100-1650°F), the reflective screens are gold-plated micarta 20] p_m (0. 0008 in.) thick.
i

From 400-600°C (750-1100°F), the reflective screens are aluminum 20] pm (0. 0008 in.)

thick. The Astroquartz, which is made by the French company Quartz et Silice, is

made of fibers drawn from pure silica and has a density of 16 kg/m 3 (1.0 per). The

total density of the Protecalor is 21 kg/m 3 (1.31 per), making it an extremely light-

weight insulation system. The high thermal efficiency of this insulation system is seen

by comparing its specific conductivity (k p - product) to that of Microquartz and

Dynaquartz, as shown in Fig. 3-11.

The entire Protecalor system is enclosed in a protective bag that improves han-

dling and prevents excessive lmoisture absorption. This bag has a top and sides made

of 76 p_n (0.003 in.) Inconel foil. The bottom of the bag is made ofil0.0-mm (0.40-in.) :

polyimide foam, weighing 48 kg/m 3 (3.0 pcf) and having an upper temperature

limit of 400°C (750°F). The polyimide foam serves to rigidize the insulation pack-

age, is moistureproof, and is also an effective insulation. The insulation system and

temperature range are shown in Fig. 3-12 and the detailed unit weight breakdown is

shown in Table 3-1.



3.6 FABRICATION & JOINING CONCEPTS

TheiTD Ni-20Cr external skin structure is fabricated by cold break-forming of

beads and'_corrugationsin r0.025-cm(0.010-in.) sheet material, and then brazing them

together along the flats between the beadswith a proprietary brazing pro.tess. This

braze process, developedby ONERA, was studied extensively by Dassault prior to

fabricating this test article to determine its feasibility. Test couponsof both parent

metal and brazed samples were made andtested. The test results, (Ref 14) indicate

that the brazing process produces abouta 10%loss of strength to the material. This

is far superior to other joining techniquespreviously used with the material. Although

the test results show a marked increase in creep at high temperature, there is no im-

pact on this design due to creep becausethe panel was not creep-critical.
t

Threaded fasteners made of TD Ni-20Cr were machined from rod stock and

were used to join the beaded, corrugation-stiffened skins to the support ribs and to

join the skins along longitudinal splices. These fasteners consist of screws and nuts.

10
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Section 4

TEST APPARATUS & PROCEDURES

4.1 HEATING & LOADING EQUIPMENT

The test setup used for the thermal-structural testing of the TPS panel is shown

in Fig. 4-1 and a schematic of the control system is shown in Fig. 4-2. Heat is pro-

vided by a 71- by 102-cm (28- by 40-in.) array having 30 1.9-cm (3/4-in.) diameter

by 71-cm (28-in.) long silicon carbide radiant-heating elements. In this configuration,

the array can draw 400 amperes at 400 volts, easily producing the required 1200°C

(2200 ° F) peak temperature over the surface of the test article and also the required

transient frontface temperature.

The heating array is powered and controlled by a power-control unit

(THERMAC). Control is automated through a data tracker system which takes inputs

from thermocouples on the panel frontfaee and regulates power to provide the pro-

grammed time-temperature history. The average of two frontface thermocouple

outputs provides the input to the data tracker.

Mechanical loads simulating aerodynamic pressures are applied to the specimen

by an array of loading wires attached at 84 discrete points on the specimen frontface.

(The loading system is detailed in Fig. 4-3.} These 0. ll-cm (0.046-in.)

diameter loading wires penetrate the insulation blanket and backface aluminum heat sink

to a whiffle-tree apparatus that combines two load wires into one load link, and repeats

this process through seven levels to a single load point. This point is at the center of

a beam having a pneumatic actuator at one end, which provides programmed reentry

loads, and a manually operated hydraulic actuator at the other end, which inputs the

_oom-temperature ascent pressure loads. A calibrated load cell at the

single load point in the center of the beam provides load feedbacklto a programmed

servoactuator, which operates the pneumatic actuator.

The loading wires are attached to 1.27-cm (0.5-in.) diameter washers, which

transmit the loads to the TD Ni-20Cr frontface structure. Both loading wires and

washers are made of Haynes-25 cobalt-base alloy.
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the whiffle tree can accommodate a number of wire failures. However, in the event

one of the loading wires fails, its load is transferred to the adjacent loading wire,

which now carries both loads. This causes a higher local load and some minor adjust-

ments in the whiffle-tree linkage levels, but does not change the total load carried in

the panel.

A diagram showing the loading wire locations on the test article frontface is

presented in Fig. 4-4. The load wires are joined along the lettered rows in the

upper levels of the whiffle-tree. This means that if a loading wire in Row A fails,

its load will be transferred to the adjacent loading wire in Row A. Hence, the load

for a lettered row will be constant until all the loading wires in that row fail. Then

the load for the row will be transferred to an adjacent row.

4.2 INSTRUMENTATION

The metallic panel is instrumented with 25 chromel/alumel thermocouples, as

shown in Fig. 4-5. Of these, five act as surface control transducers, five provide

surface measurements, and the remainder measure support rib, corrugation, and

aluminum heat-sink temperatures at various locations. In addition, there are 16

thermocouples embedded in the insulation blanket at various depths, furnishing
I

temperature gradients throughout the test. Temperature valueslwere printed on two
t

Bristol 24-point recorders and a Bristol four-pen continuous reco}der.

Load data were obtained by reading the output of the calibrated load cell at

discrete intervals. Readings were normally taken every 2 minutes, although during

the first eight load cycles this interval was reduced to one minute.

Flatness surveys were made periodically to measure the permanent deformation

in the TD Ni-20Cr Jstructure. These surveys were accomplished with the use of a

measuring bridge having seven dial indicator gages, as shown in Fig. 4-6. The

measuring bridge was placed on the specimen so that the dial indicator probes

touched a flat running between two beads on the metallic facesheet. The dial indica-

tors read the elevation of the points in the flat relative to some reference elevation.

In this case, the reference elevation was taken to be the dial indicator readings prior

to any thermal cycling. The permanent deflection of the TD Ni-20Cr structural
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panel _.-'*_ a temperature-load.__ cycle was determined by taking the difference of the

current dial indicator readings and the readings prior to the temperature cycling.

4.3 PROCEDURES& TEST SEQUENCES

Figure 3-6 showsthe transient pressure for the ascent simulation, which was

applied whenthe panel was at room temperature or less than 38°C (100°F}. Figure

3-7 shows the reentry simulation temperatures and pressures which were applied

simultaneously.

The schedule of testing the TPS panelwas:

1. Flatness survey

2. Ten cycles of reentry heat flux

a. Reentry frontface temperature profile is applied (Fig. 3-7}

b. Test article is cooled to less than 38°C (100°F} before next cycle is
applied

3. Flatness survey

4. Ninety cycles (numbered 11through 100} of combined reentry heat flux
and static pressure load

a. Static ascent simulation profile, applied at room temperature
(Fig. 3-6}

b. Reentry frontface temperature profile andprogrammed reentry
pressure profile (Fig. 3-7} applied simultaneously

c. Test article is cooledto less than 38°C (100°F} before next cycle is
applied

5. Flatness surveys conductedafter cycle No. 19, 40, 50, 60, 80, and 100.

The first 10cycles, which consisted of reentry heating profiles only, were

intendedto serve as a checkout of the test rig and a time to determine the thermal

performance of the insulation blanket. When it was demonstrated, at the end of the

tenth cycle, that both the test rig andinsulation were performing satisfactorily, the
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loading wires were installed and the combinedload and temperature cycles were

stored.

During cycle No. 11, the first cycle with the loading wires in place, tempera-

ture response of the backface heat sink was monitored closely to ensure that conduc-

tion through the loading wires and the degradingeffect of the penetrations in the

insulation wouldnot cause a large changein the temperature response of the backface

heat sink. The load wires were also monitored closely. If an excessive number,

such as an entire row, failed, the loading was terminated. This procedure was

followed in an attempt to prevent the local concentrated stresses at the remaining

load points from becoming excessive. However, load transfer due to wire failure

may have affected frontface cracking, which is described subsequently.
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Fig. 4-6 Measuring Bridge 
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Section 5

RESULTS & DISCUSSION

5.1 INITIAL THERMAL CYCLES

The first 10 cycles, which consisted of reentry heating conditions only, were

intended to verify the thermal performance of the insulation blanket, to verify the

uniformity of the panel surface temperatures, and, in general, to check the heating

array and its controller. The heating array performed very well, producing a nearly

uniform 1200°C (2200 ° F) over the panel frontface. On a typical temperature cycle,

the temperature over six surface thermocouples varied by less than 60°C (110 ° F),

from 1220-1160°C (2230-2120 ° F). The peak surface temperatures during cycle No.

2 are shown in Fig. 5-1 at their respective surface locations.

Transient temperature response is shown in Fig. 5-2 for cycle No. 2. Here, the

surface temperature is very close to the required value up until about 2200 seconds

into the reentry cycle. From this point on, the surface temperature remains higher

than the required input due to the presence of the heating array preventing the surface

from radiating heat away rapidly enough. Hence, the heating and cooling rates in this

apparatus were adequate for the most significantparts of the simulated reentry cycles.

The insulation did not exhibit appreciable degradation during the first 10 cycles,

as demonstrated by comparing the backface temperature response of cycles 2 and 10.

These are very similar, as can be seen in Fig. 5-3, where plots are presented of the

temperature response of the two extremities of the Proteealor and the aluminum

backface. The Protecalor maximum temperature did not exceed 715°C (1320°F),

and the aluminum heat sink never exceeded 90°C (200 ° F).

During an actual reentry mission, some additional benefit is obtained from

starting the reentry in a vacuum and flying through an ambient pressure trajectory

where the pressure is mostly less than the one atmosphere present during the test.

At reduced pressures, the insulation thermal conductivity is reduced, effecting a
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reduction in insulation thickness. Considering these points, reduction in the Dynaflex

--^_.._+_,,_in fhA Protecalor thick-thickness appears to be in order, and perhapssome L_u_.............

ness is possible as well.

Figure 5-4 shows a typical temperature response ,4_,,_._,_,..hth,_...v....Prntecalorinsula-

tion, which in this case is cycle 2. Thermocouple No. 30 is located on the bag sur-

face and thermocouples 31-37 are on the seven radiation foils.

Temperatures on the flexing support rib are shownin Fig. 5-5 and are taken

from cycle No. 2. They are typical of all support rib results. Note that the peak

temperature for TC 19is 677°C (1250°F), aboutthe samevalue as the insulation

temperature at the identical depth relative to the frontface. The heat leakage through

the support ribs was apparently of manageableproportions.

5.2 THERMAL-STRUCTURAL CYCLES

Following cycle No. 10, the whiffle-tree loading apparatus was installed so

that static pressure loading could be applied to the test article. From this point on,

the cycles consisted of cold static pressure load followed by combined reentry tem-

perature and pressure loads. For the first combined-environment test, cycle No. 11,

only 80%of the peak static load was applied. Subsequently, 100%load was applied on

each cycle.

5.2.1 Panel Thermal Response

Insertion of the loading wires from the frontface structure through the insulation

blanket raises the insulation's effective thermal conductivity, and should increase the

temperature response of the insulative system. By comparing the temperatures of

cycles 2 and 12, as shown in Fig. 5-6, it can be seen that the loading wires raise the

backface temperatures by about 8°C (15 ° F}, a small amount not significantly affecting

panel behavior. Continuing the testing through additional cycling did not further de-

grade the insulation, as can be seen by examining Fig. 5-7. Here, internal insulation

blanket temperature responses for cycles 17 and 77 are compared and found to be

nearly identical. These temperature response curves are typical for all cycles;

therefore, the data for all the other cycles will not be given here. Again, it is

I
[

38
i



pointed out that the Protecalor did not reach its allowable peak temperature of 900°C

(1650 ° F), and that further ...... 1......... "_+ _,,_+_nn i q possible.

During the first 14 thermal cycles, numerous failures of the frontface thermo-

couples occurred. These failures were due to excessive oxidation of the unjacketed

thermocouple leads. Because replacing or repairing these instruments was very

time-consuming, it was decided to introduce "floating" thermocouples to the front-

face. These floating thermocouples consisted of jacketed thermocouples embedded in

a flat piece of ceramic material called CPI. The ceramic pieces were rectangular,

approximately 3.8 by 3.8 by 0.3 cm (1-1/2 by 1-1/2 by 1/8 in.}, and were merely

laid on the top surface of the panel. Five of these were placed on the surface at the

approximate locations of thermocouples 2, 5, 7, 8, and 9. To determine their suit-

ability, their temperature outputs on test run No. 15 were compared with the two

remaining original, Dassault-installed thermocouples, No. 9 and 10, as plotted in Fig.

5-8. Here, it is observed that at the higher temperatures there is good agreement,

but for some reason, below 930°C (1700°F), the two original TCs did not give any

output. Because the temperature response was adequate and the higher temperatures

agreed, it was decided to continue with the floating thermocouples for the remainder

of the test program.

5.2.2 Flatness Measurements

Following temperature cycle No. 10, the whiffle-tree loading device was in-

stalled and a load-deflection survey of the panel was made. This survey was per-

formed by placing the measuring bridge used for the flatness surveys on flat No. 7,

and incrementing the static load by 45 kg (100 lb). After a peak load of 440 kg (967 lb)

was obtained, the panel was unloaded and another zero measurement taken. (See

Table A-1 in the Appendix. )

Figure 5-9 presents mid-span deflection versus load along fiat No. 7. Prior to

any loading, the initial zero-load-point deflection measurement was zero for both

left and right spans. After loading, the left-span deflection data indicated that some

settlement had occurred; i.e., the extrapolated data gave a zero-load displacement

of 0.038 cm (0. 015 in.). A subsequent left-span zero-load deflection measurement
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of 0.04 cm (0. 016 in. } verified this settlement. It is necessary to subtract this

iinitial settlement (the 0.038-cm (0 015-in• __1_^) w_u_ was used) from the left span of

each subsequent flatness survey.

A comparison of the data with a theoretrical _,_,.._.v.._l_-*_,,,__,_rv_...... is also shown in

Fig. 5-9. Note that the theoretical line has a smaller slope than the data line. The

theoretical curve assumes that the span is a simply supported beam with no rotational

end restraints. This is not exactly true, as the support ribs do provide some rota-

tional end restraint.

Flatness surveys were made at various intervals to measure the permanent set

caused by plasticity effects - primarily, high-temperature creep. Flatness survey

data for the mid-span points along flats No. 4 and 9 are plotted in Fig. 5-10 as func-

tions of the number of test cycles. Here, the initial support settlement is subtracted

from the left span. However, the left span has a greater permanent deflection than

the right. This is probably due to the fact that the temperatures over the left span

were slightly higher than those on the right, and caused more creep to occur in the

beads and corrugations. It is observed that there is measureable permanent deflection

after the first 10 cycles, in spite of there having been no pressure load applied. This

is probably due to the effect of residual stresses built into the panel during manufac-

ture and assembly combined with the thermal stresses produced by the applied heat

load.

There is another significant increase in permanent deflection of the left span

and a rearrangement of permanent deflection in the right span between cycles 10 and

19. This is apparently due to residual stress acted upon by the applied mechanical

load introduced in cycle ll, as well as the thermally induced loads• The residual

stress distributions are altered by the application of the simulated pressure load•

From cycles 19 to 100, the increase in permanent deflection is more orderly and is

indicative of the behavior which results from cyclic creep. This phenomenon was

observed during cyclic testing of Haynes-25 panels by Grumman and is reported in

Ref 7 and 11. Note that the magnitude of these permanent deflections is relatively

small in all cases.
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Figure 5-11 shows the permanent deflection plotted in the spanwise direction

for flat No. 4, a typical flat. Here, again, the difference in deformation betweenthe

left and right spans is illustrated. This type of behavior was also observed during

cyclic testing of Haynes-25panels and was reported in Ref 7 and 11.

A combination of 100-cycle permanent set plus deflection pi_oducedby a limit

cold static load of 144 N/m 2 (3 psi) is shownin Fig. 5-12. It canbe seen that the

maximum allowable deflection, 1.27 cm (0.5 in. ), provides ample margin for this

parameter. This is the maximum deflection obtainedat any time during a 100-mission

life under limit load. It appears that this panel configuration and material were suc-

cessful in preventing excessive cyclic creepattemperatures up to 1200°C (2200°F}.

5. 2.3 Additional Test Results

A log of all the test cycles is presented in Table 5-1, where dates and comments

on loads and anomalies occurring during the testing are included. There were a

number of loading-wire failures that were reported. These consisted of the wire

breaking in the vicinity of the washer connecting it to the hot TPS panel frontface. It

is probable that these failures were due to creep rupture and excessive oxidation

of the wires occurring in the 1200°C (2200°F) environment. The loading wires were

made of Haynes-25 and Haynes-188, alloys not suitable for this temperature.

TD Ni-20Cr wire, if available, would be a better material.

There were numerous runs where a few loading wires failed. When this

happened, the loads from the failure load point were added to the adjacent load point

in the same lettered row, and the panel still carried the same total load. However,

concentrated stresses around the overloaded hole were now twice as large. In seven

cases, an entire lettered row failed and the load was terminated before peak hot-

pressure load was attained.

At the conclusion of the 88th cycle, a 3.8-cm (1-1/2-in.) crack was observed

along flat No. 7, in the vicinity of load link C-7. The crack was along the intersec-

tion of the flat and the bead and right around a loading point. A picture of the crack is

shown in Fig. 5-13. There are a number of stress concentrations interacting at this

location: there is a large thermal stress due to the flexing of the bead, there is a

stress concentration from load point C-7, and there is a stress concentration from
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the fasteners making the lateral joint running along flat No. 7. Probably, this

crack was present for a number of cycles before it was discovered. It was decided

L,',J .m,.u..,lJ.m.ta,'_u,, . , m --'k.,.'.LJL.mL_v. ,.,m--j.j.j.. ,_ uJ.O.J..tl_,t,(c::m VVCI,_IIIL::)I _I,,IL, L,J.I(C@mU(;LU .[.,)UJ.IlI_ -'vvit_l a .L_l,..i.'_II_e,.[.",

rectangular one, and continue the test. This washer was 1.3 by 2.5 cm (0.5 by 1.0

in.}.

After cycle No. 93, additional cracks appeared in the vicinity of loading points

B-7 and C-5. These cracks were also parallel to the beads and near the intersection

of the bead and flat. The testing was continued to 100 cycles, again because the

load-carrying capability of the panel remained intact.

5.3 POST-TEST INSPECTION

The panel was photographed (Fig. 5-14) on the test rig after 100 cycles had been

completed. The metallic frontface had a thin layer of greenish-black powder over the

entire surface. Upper side surfaces were discolored and had a greenish hue.

After removal from the test rig, additional photographs (Fig. 5-15 and 5-16)

were taken of the front and back surfaces, respectively. There were no analyses or

high-resolution photos made, nor x-ray diffractiontechniques used, to assess the

levels of oxidation formed on the surfaces.

It is assumed for this high-temperature static test that:

• Those surfaces exhibiting a greenish hue show the formation of oxidized

chromium, CR203

• The frontface shows CR203 powder, perhaps becoming dissociated and

mixed with THO 2 particles (Ref 20)

Five major cracks and a minor crack were observed on the metallic frontface.

A map showing the location of these cracks is shown in Fig. 5-17. Note that all the

cracks run parallel to the beads and that all the major cracks, those longer than 0.625

cm (1/4 in. ), lie at the junction of a fiat and a bead in the vicinity of a loading point.

There is a stress concentration at these points due to the introduction of the con-

centrated load from the loading wires. These stresses are added to the stress in the

bead, which occurs when the bead flexes to take up the thermal expansion in the

lateral direction. It is possible that if the load was a uniform pressure instead of a
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pattern of discrete concentrated loads, most of the cracking in the facesheet would

not have occurred. Recall that the first large crack was observed after the 88th

cycle. In spite of the cracking, however, catastrophic failure did not occur, and the

panel continued to sustain the applied loads and temperature.

A photograph of the 7.6-cm (3.0-in.) crack)ocated at loading point "_ "

presented in Fig. 5-18. This is the largest craok in the panel and was the first one

detected (after cycle 88). Also visible is the 3.6-cm (1.4-in.) crack_ocated at loading

point C-5.

The supports at the ends of the panel were designed to take out horizontal

loads. This is accomplished by inclusion of drag brackets situated along these

supports at a119-cm (7.5-in.) pitch. For thisltest article, _he supports at the left and

right ends had three drag brackets each. The drag bracket comes up to about

1.3 cm (1/2 in.) of the top of the support, and provides no stiffening above this point.

It was observed that just above two of the drag brackets on the left end support there

were kinks in the support indicating a large horizontal force to the left was sustained

there.

A photograph of the kink above the center drag bracket is shown in Fig. 5-19.

The horizontal force may have been due to failure of the expansion joint in the center

of the panel to allow free expansion. During panel heating, the temperature gradient

through the corrugation can produce bowing upward of the panels and consequent pres-

sure between the overlapped beaded sheets in the expansion joint. Hence, thermal

expansion could produce a horizontal force in the proper direction to create the

noted kinks.

An attempt was made to remove the TD Ni-20Cr threaded fasteners holding the

frontface structure to the vertical supports. The fasteners proved to be impossible

to remove, probably due to diffusion bonding of the fasteners to the 0. 025-cm

(0.010-in.) sheet material. In fact, a wrench and screwdriver were unable to open

the fasteners at all. If it is required that these fasteners be removable during the

service life of the TPS, a potting compound about the fastener should be used. Alter-

natively, preoxidation of fastener and fastened materials might be investigated to

prevent this bonding.
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The insulation packagewas removed from the test panel and examined.

Photographs were taken and are presented in Fig. 5-20 and 5-21. The Dynaflex

showedconsiderable shrinkage - about 7%- along the top surface where it was

nn_r_tincrvr.... _ at 1200°C (2200 ° F) mud considerably lessat lower temperatures. For the

test article, the shrinkage reduces rapidly as distance from the i200°C surface

increases, and is negligible at the backface of the Dynaflex, which is 4.0 cm

(1.57 in.) from the top surface.

Considerable oxidation of the Inconel bagging around the Protecalor was visible,

extending from the top surface, where the Dynaflex meets the Protecalor, to about

one-third of the way down the sides. However, no holes in the foil were found. One

side of the bagging was removed to examine the Protecalor. Both the reflective

screens and the Astroquartz appeared to be in excellent condition. No damage was

observed on the polyimide-foam backface bagging.
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Cycle Date

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

7-25

7-26

7-26

7-27

7-27

7-27

7-30

7-30

7-30

7-31

8-21

8-22

8-22

8-22

8-23

8-23

8-23

8-24

8-24

8-27

8-28

8-28

8-29

8-29

8-30

8-30

8-31

8-31

8-31

9-4

9-4

9-4

9-5

9-5

9-5

9-6

9-6

9-6

9-7

Table 5-1 Test Log (Sheet 1 of 3)

% of Peak Hot

Load Achieved

0

0

0

0

0

0

0

0

0

0

8O

100

100

100

100

100

100

100 8 in Row B

100

104 2 in Row B

100 1 in Row A

85

100

100

100 1 in Row B

100

100

100

100 1 in Row 8

100

100

100 2 in Row B

100

100 2 in Row B

100 2 in Row B

100

IO0

100

100

Loading Wires

Faiied Remarks

Peak temp reduced 2 min early

TC 6 failed

TC 2 failed

TC 11 failed

8 TCs failed, all on frontface

TC 4 failed

Introduced "floating" TCs

TC 2 & 7 failed

TC 7 failed, burned hole in skin

TC 5 failed
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Table 5-1 Test Log (cont) (Sheet 2 of 3)

Cycle

40

41

42

43

44

45

46

46a

47

48

49

50

51

52

53

Date

9-7

9-7

9-10

9-10

9-11

9-11

9-11

9-12

9-12

9-13

9-13

9-13

9-17

9-17

9-18

% of Peak Hot Loading Wires

Load Achieved Failed

92

96

96

100

100

100

64

100

100

104

100

96

54

43

100

C-12

B-12, C-2

C-5, D-9 & 10,

F-11

D-1 thru 12

C-0, D-11 & 12

D-4, 5 & 6, E-8

C-2, 5 & 9, D-3, 4,

10& 11, E-8 &9

B-9 & 10, D-2 & 9

D-4, 5, 6, 7 &8

TC 4 failed

Remarks

Load aborted at 27 min

Load aborted at 24 min

Load aborted at 20 min

REPLACED ALL LOAD WIRES IN ROWS B THRU E

54

55

56

57

58

59

60

9-19

9-19

9-19

9-20

9-20

9-20

9-21

100

100

100

100

48

100

100

D-1 thru 12 Load aborted at 22 min

61

62

63

64

65

66

67

68

69

70

71

72

REPLACED ALL LOAD WIRES IN ROW C

9-21

9-24

9-24

9-24

9-25

9-25

9-25

9-26

9-26

9-26

9-27

9-27

100

100

37

100

100

96

100

100

100

100

100

100

B-9 & 10 Load aborted at 18 min

J
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Table 5-1 Test Log (cont) (Sheet 3 of 3)

% of Peak Hot Loading Wires

Cycle Date Load Achieved Failed Remarks

Load aborted at 24 rain73

74

75

76

77

78

79

8O

81

82

83

9-27 54

9-28 100

9-28 i 00

9-28 94

10-1 100

10-1 94

10-1 96

10-2 100

10-2 96

10-2 96

10-3 100

84

85

86

87

88

10-3

10-3

10-4

10-4

10-4

FOUND LARGE

100

100

100

100

100

CRACK ALONG CENTER OF PANEL; PHOTOGRAPHED

CRACK; REPLACED 13 LOAD WIRES

89

90

91

92

93

94

95

96

97

98

99

100

10-8

10-8

10-8

10-9

10-9

10-9

10-10

10-10

10-10

10-11

10-11

10-11

100

55

100

100

100

100

100

100

100

100

100

100

Load aborted at 24 min
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Fig. 5-13 Surface Crack After 88 Cycles 

Fig. 5-14 Test Article in Fixture After 100 Cycles 
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Fig. 1 1 5  Top Surface After 100 Cycles 

Fig. 5-16 Bottom Surface After 100 Cycles 
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Fig. 5-18 Surface Cracks After 100 Cycles 
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Fig. 519 Kink in Support Rib 
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* -  Fig. 520 Insulation After I 0 0  Cycles 

Fig. 521 Insulation After 100 Cycles 
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Section 6

CONC LUSIONS

The TD Ni-20Cr TPS panel ...... reentry ....... *........ _

launch and boost mechanical load cycles, and 90 combined temperature and pressure

load reentry cycles. The following conclusions can be stated:

The TD Ni-20Cr metallic panel was able to sustain desig_ static loads

and high temperature for 100 reentry cycles and also carry loads at room

temperature between reentry cycles

Creep and static load total deflection was 44% of allowable deflection

• The French-developed TD Ni-20Cr brazing process performed well

The French-developed Protecalor insulation system performed well

and offers considerable weight advantage in the temperature range of

900-400 ° C (1650-750 ° F) over other commercially available insulations,

pending proof of its ability to resist thermo-acoustic environments

encountered in aerospace applications
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Section 7

RECOMMENDATIONSFOR IMPROVEDPANEL PERFORMANCE

should address the following:

Optimization of the insulation. Increase peak temperature of the Protecalor
insulation to 9000C(1650° F). This will permit a removal of some of the

higher-density Dynaflex. Also, take advantage of the reduced ambient

pressure during reentry and its effect on reducing the thermal conductivity.

This will further reduce the amount of insulation required

Improvement in the design of the drag brackets of expansion joints to

prevent kinking of the supports resulting from the horizontal loads

A study to examine the fastening scheme in the longitudinal seam between

panels to determine if the fasteners initiate cracks

An improvement in the fastener design that will allow easy removal after

cycling at 1200 ° C (2200 ° F)

A study to determine if reduced atmospheric pressure and a flowing-air

environment greatly alter the oxidation characteristics of TD Ni-20Cr

at 12000C (2200 °F)

An examination of the dynamic behavior of the panel after numerous

thermal cycles, i.e., apply dynamic launch and boost and dynamic

reentry loads in addition to static ones

• Develop a light-weight TD Ni-20Cr foil bagging

67
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Appendix

FLATNESS SURVEY DATA

Presented here are the .............. survey _-*-lO_U--U_£1_g t lull _*xv .L.La_k_,_o 0u_ and *_^ _"*_^_ survcy

data taken after cycles i0, 19, 40, 50, 60, 80, and i00. Figure A-I shows the

locations of the various points where the dial indicator deflection data were taken.

These points are described by the same numbering system as the loading wires; the

points differin location only in that they are shifted i.3 cm (0.5 in.) to the leftof the

load points.

The data in Tables A-1 through A-8 are the changes in vertical height of the

measurement points, with positive numbers being downward. The accuracy of these

measurements is approximately _+0. 003 in.
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Table A-1 Load-Deflection Survey, Flat No. 7

CHANGE (IN.) FROM ZERO LOAD i

Dial Indicator No. (Left to Right)

Load,
Ib 1 2 3 4 5 6 7

0

100

200

300

40O

500

600

700

800

900

965

0

0 0 0 0 0 0 0

0.029 0.026 0.017 0.001 0.008 0.011 0.008

0.038 0.041 0.028 0.002 0.016 0.023 0.016

0.046 0.055 0.040 0.004 0.024 0.035 0.025

0.054 0.067 0.052 0.004 0.032 0.047 0.033

0.063 0.083 0.063 0.006 0.040 0.058 0.040

0.070 0.096 0.073 0.006 0.047 0.069 0.048

0.079 0.111 0.084 0.006 0.055 0.080 0.055

0.086 0.124 0.094 0.006 0.062 0.090 0.062

0.094 0.137 0.104 0.007 0.070 0.101 0.069

0.099 0.145 0.110 0.007 0.074 0.108 0.073

0.022 0.016 0.009 0.003 0.001 0.002 0.002

Table A-2 Flatness Survey No. 2, After Cycle No. 10

CHANGE (IN.) FROM FLATNESS SURVEY NO. 1

Flat
No.

1

2

3

4

5

6

7

8

9

10

11

12

Dial Indicator No. (Left to Right)

1 2 3 4 5 6 7

-0.004 0.007 0.013 0.020 0.006 0.004 0.000

-0.002 0.011 0.020 0.032 0.016 0.012 0.009

0.009 0.024 0.035 0.046 0.027 0.022 0.017

0.016 0.029 0.038 0.050 0.034 0.028 0.023

0.020 0.031 0.042 0.056 0.038 0.033 0.027

0.020 0.031 0.044 0.063 0.074 0.037 0.031

0.007 0.022 0.036 0.044 0.038 0.030 0.026

0.019 0.031 0.042 0.056 0.039 0.030 0.025

0.015 0.026 0.037 0.049 0.032 0.024 0.021

0.011 0.020 0.036 0.050 0.032 0.030 0.026

-0.002 0.012 0.021 0.032 0.012 0.008 0.007

-0.017 0.001 0.004 0.009 0.001 -0.003 -0.004



Table A-3 Flatness Survey No. 3, After Cycle No. 19

CHANGE (IN.) FROM FLATNESS SURVEY NO. 1 i

rlut
No.

1

2

3

4

5

6

7

8

9

10

11

12

Dia! .Indicator No. (Left to Right)

1 2 3 ' 4 5 6 7

0.001 0.012 -0.004 -0.065 -0.029 -0.016 -0.015

0.014 0.018 0.005 -0.016 -0.017 -0.005 -0.004

0.025 0.036 0.024 0.003 0.000 0.009 0.009

0.032 0.043 0.032 0.014 0.011 0.019 0.018

0.037 0.045 0.034 0.024 0.017 0.026 0.025

0.037 0.045 0.039 0.036 0.026 0.034 0.031

0.029 0.048 0.037 0.006 0.024 0.030 0.028

0.044 0.065 0.043 0.027 0.027 0.032 0.031

0.044 0.054 0.043 0.023 0.021 0.028 0.027

0.038 0.043 0.033 0.012 0.009 0.022 0.023

0.028 0.029 0.023 0.002 -0.002 0.010 0.012

0.011 0.021 0.006 -0.021 -0.015 -0.001 0.001

Table A-4 Flatness Survey No. 4, After Cycle No. 40

CHANGE (IN.) FROM FLATNESS SURVEY NO. 1

Flat
No.

1

2

3

4

5

6

7

8

9

10

11

12

Dial Indicator No. (Left to Right)

1 2 3 4 5 6 7

0.010 0.027 0.009 -0.034 -0.024 -0.008 -0.009

0.013 0.028 0.013 -0.013 -0.009 0.004 0.003

0.033 0.045 0.031 0.007 0.006 0.015 0.014

0.037 0.049 0.037 0.021 0.020 0.030 0.030

0.040 0.048 0.035 0.026 0.022 0.032 0.031

0.039 0.047 0.037 0.037 0.030 0.040 0.037

0.032 0.045 0.037 -0.001 0.030 0.034 0.033

0.049 0.063 0.049 0.025 0.030 0.036 0.034

0.048 0.062 0.048 0.022 0.024 0.031 0.031

0.041 0.045 0.035 0.010 0.009 0.023 0.025

0.029 0.040 0.024 -0.001 0.000 0.010 0.013

0.013 0.024 0.008 -0.026 -0.015 0.000 0.002



TableA-5 FlatnessSurveyNo.5,AfterCycleNo.50

CHANGE(!N.)FROMFLATNESSSURVEYNO.1

Flat
DialIndicatorNo.(Leftto Right)

1 2 .3 4 5 6 7No.

1 0.013 0.035 0.018 -0.032 -0.016 -0.001 -0.006

2 0.012 0.030 0.016 -0.013 -0.006 0.008 0.006

3 0.032 0.046 0.032 0.007 0.006 0.017 0.015

4 0.037 0.049 0.038 0.017 0.013 0.026 0.025

5 0.039 0.051 0.040 0.026 0.023 0.035 0.032

6 0,041 0.050 0.042 0.037 0.034 0.035 0.041

7 0,043 0.050 0.108 0.005 0.036 0.039 0,037

8 0.052 0.067 0.046 0.025 0.035 0.042 0.037

9 0.051 0,067 0.051 0.022 0.030 0.037 0.034

10 0,043 0.052 0.046 0.012 0.014 0.033 0.032

11 0.033 0.042 0.057 0.002 0.004 0.017 0.017

12 0.015 0.028 0.061 -0,026 -0.010 0.005 0.004

Flat

Table A-6 Flatness Survey No. 6, After Cycle No. 60

CHANGE (IN.) FROM FLATNESS SURVEY NO. 1
• =-, , =

Dial Indicator, No. (Left to Right)

No. 1 2 3 4 5 6 7

1 0.022 0.049 0.041 -0.046 -0.017 -0.002 -0.006

2 0.013 0.034 0.023 -0.013 -0.007 0.006 0.004

3 0.033 0.049 0.038 0.009 0.009 0.019 0.016

4 0.038 0.052 0.043 0,019 0.020 0.028 0.024

5 0.048 0.007 0.040 0.027 0.026 0.035 0.032

6 0,040 0.053 0.045 0.036 0.032 0,041 0.039

7 0.033 0.052 0.046 -0.006 0.032 0.035 0.036

8 0.047 0.070 0.059 0.025 0.034 0.038 0.036

9 0.052 0.066 0.053 0.022 0.029 0.035 0.033

10 0.045 0.055 0.045 0.012 0.014 0,031 0.032

11 0.032 0,045 0.029 -0.001 0 002 0.015 0.016

12 0.017 0.031 0.014 -0,024 -0.010 0.004 0.005
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TableA-7FlatnessSurveyNo.7,AfterCycleNo.80

CHANGE(IN.)FROMFLATNESSSURVEYNO.1 11

Flat
Dial Indicator No. (Left to Right)

1 2 3 4 5 6 7No.

1 0.025 0.056 0.050 -0.044 -0.012 0.002 -0.OU3

2 0.016 0.043 0.032 -0.012 -0.002 0.009 0.006

3 0.035 0.061 0.043 0.010 0.013 0.022 0.019

4 0.040 0.063 0.050 0.022 0.028 0.035 0.034

5 0.041 0.058 0.051 0.026 0.032 0.036 0.035

6 0.040 0.057 0.055 0.034 0.037 0.043 0.041

7 0.035 0.060 0.053 -0.007 0.014 0.022 0.038

8 0.057 0.070 0.073 0.026 0.039 0.041 0.037

9 0.056 0.085 0.069 0.021 0.036 0.039 0.026

10 0.051 0.070 0.061 0.018 0.019 0.042 0.044

11 0.037 0.053 0.040 0.002 0.008 0.017 0.016

12 0.121 0.038 0.024 -0.021 -0.005 0.006 0.005

Flat
No.

1

2

3

4

5

6

7

8

9

10

11

12

Table A-8 Flatness Survey No. 8, After Cycle No. 100
!

CHANGE (IN.) FROM FLATNESS SURVEY NO. 1
I

Dial Indicator No. (Left to Right)

1 2 3 4 5 6 7

0.029 0.070 0.071 -0.040 -0.007 0.001 0.008

0.017 0.053 0.042 -0.009 0.001 0.009 0.013

0.037 0.071 0.059 0.013 0.015 0.022 0.025

0.048 0.067 0.064 0.024 0.031 0.035 0.038

0.045 0.073 0.075 0.027 0.037 0.040 0.042

0.045 0.074 0.075 0.031 0.043 0.048 0.050

0.040 0.074 0.063 -0.008 -0.031 0.011 0.047

0.058 0.062 0.082 0.023 0.050 0.051 0.047

0.058 0.097 0.071 0.022 0.043 0.049 0.044

0.051 0.079 0.066 0.013 0.002 0.039 0.040

0.038 0.061 0.049 0.006 0.016 0.027 0.028

0.022 0.046 0.034 -0.017 0.006 0.014 0.017

76


